TY - BOOK AU - Silva,C.E. TI - Invitation to ergodic theory T2 - Student mathematical library SN - 9780821887332 PY - 2008/// CY - Providence PB - American Mathematical Society KW - Ergodic theory KW - Lebesgue measure KW - Recurrence and ergodicity KW - Ergodic theorem KW - Mixing notions N1 - Includes bibliographical references and index N2 - This book is an introduction to basic concepts in ergodic theory such as recurrence, ergodicity, the ergodic theorem, mixing, and weak mixing. It does not assume knowledge of measure theory; all the results needed from measure theory are presented from scratch. In particular, the book includes a detailed construction of the Lebesgue measure on the real line and an introduction to measure spaces up to the Carathéodory extension theorem. It also develops the Lebesgue theory of integration, including the dominated convergence theorem and an introduction to the Lebesgue spaces. Several examples of a dynamical system are developed in detail to illustrate various dynamical concepts. These include in particular the baker's transformation, irrational rotations, the dyadic odometer, the Hajian–Kakutani transformation, the Gauss transformation, and the Chacón transformation. There is a detailed discussion of cutting and stacking transformations in ergodic theory. The book includes several exercises and some open questions to give the flavor of current research. The book also introduces some notions from topological dynamics, such as minimality, transitivity and symbolic spaces; and develops some metric topology, including the Baire category theorem ER -