| 000 | 01122nam a2200265Ia 4500 | ||
|---|---|---|---|
| 003 | OSt | ||
| 005 | 20250624115704.0 | ||
| 008 | 220926b |||||||| |||| 00| 0 eng d | ||
| 020 | _a0521 27286 6 | ||
| 037 | _cReference | ||
| 040 |
_aRTL _cRTL _beng |
||
| 041 |
_2eng _aeng |
||
| 084 |
_aB2 M4/SC _qRTL |
||
| 100 |
_aBlyth, T S _9373911 |
||
| 245 | 0 | _aMatrics and vector spaces | |
| 260 |
_aCambridge _bCambridge university press _c1984 |
||
| 300 | _ax, 99 p. | ||
| 490 |
_aAlbgebra through practices: A collection of problems in algebra with solutions _v2 |
||
| 520 | _aMatrices and vector spaces are fundamental concepts in linear algebra. A vector space is a set of objects (vectors) that can be added together and multiplied by scalars, satisfying certain axioms. Matrices, which are rectangular arrays of numbers, can be used to represent linear transformations and systems of linear equations within vector spaces. | ||
| 650 | _2Matrices algebra | ||
| 650 | _aMathematics | ||
| 700 |
_aRobertson, E F _9373912 |
||
| 942 |
_hB2 M4/SC _cREF _2CC _n0 |
||
| 999 |
_c693611 _d693611 |
||