000 01122nam a2200265Ia 4500
003 OSt
005 20250624115704.0
008 220926b |||||||| |||| 00| 0 eng d
020 _a0521 27286 6
037 _cReference
040 _aRTL
_cRTL
_beng
041 _2eng
_aeng
084 _aB2 M4/SC
_qRTL
100 _aBlyth, T S
_9373911
245 0 _aMatrics and vector spaces
260 _aCambridge
_bCambridge university press
_c1984
300 _ax, 99 p.
490 _aAlbgebra through practices: A collection of problems in algebra with solutions
_v2
520 _aMatrices and vector spaces are fundamental concepts in linear algebra. A vector space is a set of objects (vectors) that can be added together and multiplied by scalars, satisfying certain axioms. Matrices, which are rectangular arrays of numbers, can be used to represent linear transformations and systems of linear equations within vector spaces.
650 _2Matrices algebra
650 _aMathematics
700 _aRobertson, E F
_9373912
942 _hB2 M4/SC
_cREF
_2CC
_n0
999 _c693611
_d693611