Amazon cover image
Image from Amazon.com
Image from Google Jackets
Image from OpenLibrary
See Baker & Taylor
Image from Baker & Taylor

Stochastic PDE's and Kolmogorov equations in infinite dimensions : lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, August 24- September 1, 1998 / by N.V. Krylov, M. Röckner, and J. Zabczyk.

By: Contributor(s): Material type: TextTextLanguage: English Series: Lecture notes in mathematics ; 1715Publication details: Berlin : Springer, 1999.Description: viii, 239 p. ; 24 cmISBN:
  • 9783540665458
Subject(s): Other classification:
  • B2811 N9 NBHM
Summary: Kolmogorov equations are second order parabolic equations with a finite or an infinite number of variables. They are deeply connected with stochastic differential equations in finite or infinite dimensional spaces. They arise in many fields as Mathematical Physics, Chemistry and Mathematical Finance. These equations can be studied both by probabilistic and by analytic methods, using such tools as Gaussian measures, Dirichlet Forms, and stochastic calculus. The following courses have been delivered: N.V. Krylov presented Kolmogorov equations coming from finite-dimensional equations, giving existence, uniqueness and regularity results. M. Röckner has presented an approach to Kolmogorov equations in infinite dimensions, based on an LP-analysis of the corresponding diffusion operators with respect to suitably chosen measures. J. Zabczyk started from classical results of L. Gross, on the heat equation in infinite dimension, and discussed some recent results.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Call number Status Barcode
Textual Textual Faculty of Mathematical Sciences Library Central Science Library B2811 N9 NBHM (Browse shelf(Opens below)) Available SL1656201

Includes bibliographical references.

Kolmogorov equations are second order parabolic equations with a finite or an infinite number of variables. They are deeply connected with stochastic differential equations in finite or infinite dimensional spaces. They arise in many fields as Mathematical Physics, Chemistry and Mathematical Finance. These equations can be studied both by probabilistic and by analytic methods, using such tools as Gaussian measures, Dirichlet Forms, and stochastic calculus. The following courses have been delivered: N.V. Krylov presented Kolmogorov equations coming from finite-dimensional equations, giving existence, uniqueness and regularity results. M. Röckner has presented an approach to Kolmogorov equations in infinite dimensions, based on an LP-analysis of the corresponding diffusion operators with respect to suitably chosen measures. J. Zabczyk started from classical results of L. Gross, on the heat equation in infinite dimension, and discussed some recent results.

There are no comments on this title.

to post a comment.